An Approach for Facilitating Development of Web-
based Information Systems

Angel Isracl Ortiz-Comejo, Heriberto Cuayhuitl y Carlos Pérez-Corona

Universidad Auténoma de Tlaxcala,
Dcpariment of Enginecring and Technology
Intelligent Systems Rescarch Group
Apartado Postal #140, Apizaco, Tlaxcala, 90300, Mcxico
{aortiz, hcuayahu, cperez) @ ingenicria.uatx.mx

Abstract. In this paper we present an approach for facilitating development of
web-based information systems based on the MVC (Model-View-Controller)
design pattem. Our approach consists in the automation of two components:
View and Controller. For automating the view we propose the use of style
shects, which apply a consistent visual design to the pages that integrate a web-
site. For automating the controller we propose a markup language (WSML) for
specifying the structure and navigation features of web sites, as well as a code
generator for automatic coding based on an algorithm using code templates that
generates fully functional HTML code by parsing WSML documents. We illus-
trate our approach with an information system for evaluating basic education,
This approach is very useful for building web-based information systems in
new domains saving time and cffort in the development phase.

1 Introduction

Our information-based society has created a large demand for the development of
web-based information systems. Currently, expert programmers perform development
once the design is written. However, the development phase may require re-recoding
in the following scenarios: because of unsatisfied customers who request changes in
the User Interface (UI), because usability testing (usually performed before finishing
coding) might require changes in the Ul, and because adding functionality after de-
ployed applications might affect part of the coded UI. These scenarios illustrate the
fact that a mechanism for coding automatically from a Ul document could dramati-
cally reduce time and effort spent in the web-based application development process.
In the past, few research efforts have been undertaken in this area. For instance,
WebML provides a markup language for specifying complex web sites at the concep-
tual level [1, 2], but it is a general modeling language missing specific primitives of
data-entry applications. Current frameworks such as Wizard allow developers to spec-
ify web-based data entry applications based on XML documents in order to produce
fully functional skeletons for the web pages [3). and VoiceBuilder allow developers to
specify speech applications from either a GUI or web-based application stored in a
high-level language in order to automate coding of speech applications {4). Other
tools such as GARP allow developers to generate web reports automatically from a

292 Angel Israel Ortiz=-Cornejo, et al.

database schema [S]. and the Ninf Portal toolkit facilitate the development of Grid
portals by automatically generating the portal front-end from an XML document [6].
Despite of the recent work on the rapid prototyping of web-based applications, we
must continue developing either automatic or semi-automatic methods for facilitating
development of web-based information systems.

In this research we present preliminary investigations towards rapid prototyping
web-based systems, based on two markup languages and a code generator. In the re-
mainder of this paper, we first describe the architecture of our approach, WISBuilder
(Web-based Information Systems Builder) in scction 2. We then describe our markup
languages for specifying web content (WSML and WAML) in section 3. In section 4
we describe the code gencrator. In section 5 we describe a case study using our pro-
posed approach. Finally, in section 6 we provide conclusions and future dircctions.

2 Architecture of WISBuilder

There are three types of tasks involved in the development of Web-based information
systems using the MVC (Model-View-Controller) design pattern: 1) the structural
design of a web site, 2) the web-site visual design, and 3) the development of web
applications corresponding to the business-logic. A major problem in the design of
web sites is that the MVC tasks are highly dependent among them. In figure | we
illustrate the architecture of WISBuilder, in which we proposes a separation of tasks.
In this architecture a web designer specifies web content through a GUI (Graphical
User Interface), stored in XML documents (WSML and WAML). Such documents are
given as input to the code generator, which uses code templates and style sheets in
order to generate fully functional HTML code. Due to the fact that the style sheets as
well as the code templates might be generated through any development environment,
the tasks of the MVC can be developed in parallel.

(Gu)

Fig. 1. The architecture of W1SBuilder.

The goals of this architecture are threefold: 1) establish a clear separation of tasks for
making them independent without loosing join collaboration, 2) build web-based

An Approach for Facilitating Development of Web-based Information Systems 293

information systems with a semi-automatic approach, and 3) make the development
and maintenance tasks easier. We attempt to apply the MVC design pattern to this
architecture through the use of two markup languages: WSML which specifics the
structure of a web site, and WAML which specifics web applications. The controller
is automated through the usc of the WSML markup language and code templates. The
WAML language is used for embedding applications into the web sitc and also uscs
code templates. The view is automated through the use of style sheets (stored in a
repository) in order to provide a consistent view for the entire web-site. In this way,
our approach attempt to facilitatc development of web-based information systems.

3 The Markup Languages

Wc propose two markup languages in order to specify web content in a more declara-
tive language and independent of visual presentation, the resulting documents are
given as input to the code generator for generating fully functional code.

3.1 Web Site Modeling Language (WSML)

WSML (Web Site Modeling Language) is an XML language for modeling and design-
ing web sites, which describes the elements contained into a web site. Usually, a web-
site is integrated by a set of web pages, which are compounded of ¢lements and navi-
gation features. In the same way, a web-site in WSML is corapounded of multiple web
pages arranged into sections according 1o its contents. Each seclion contains at least
one web page, and every page contains different kind of elements like forms, text,
links to other pages, etc. The navigation among pages is the feature that allows a web
page to access other pages, possibly involving a pre-processing such as a database
query. Thus, WSML allows the spccification of elements in a structured way, as well
as the specification of navigation clements.

It is important to remark that this language allows the design of web sites without
taking care about the appearance of web pages and elements inside pages, in such a
way that the modeling of the site is independent of its visual style, which suggests a
separate design. Another important feature of this language consists in separating the
development of web applications from the modeling of the site; in other words, the
user can develop applications independently of the web site design. Then, the code
generator can embed automatically those applications into their corresponding places.
However, the developed applications must be stored in a specific dircctory, so that the
code generator can find them. The web applications embedded into the web pages can
be created automatically using WAML (Web Application Modeling Language), a
proposed markup language for describing web applications using code templates that
can be written in various kinds of code (applets or scripts).

294 Angel Israel Orti=-Cornejo, et al.

Rasteeirn]

1S @
(Cren | s |

AbOUUSDIgR Incer Page

Tous tetton Utert tecton
l. .. -
80— 8——8—= o) 7 ¥
j d l I . l ted ted] beut vab Vb
] ey Loy
u.e ! | vrer 3ot '_u-.n o | S I E prrpac W PACIDONY
juga oy b alle r /S dor g
PEC PROLIAP Me1) 1arSetuon chargeP a3 sword 17 2 T3 wier

Fig. 1. An example of a web site in the design phase.

In figure | we show a web site with three sections: 1) the Root section which is the
main section of a web-site, 2) the Tools section which represent the business logic,
and 3) the Users section uscd for user authentication. Every section contains diflerent
pages with different content, which can be visible or invisible to the users. A visible
page is available to the users; an invisible page can only be accessed when a process
(like a form) is triggered. The pages marked with a lock are hidden to unlogged users;
those pages arc only available when a user has started a session. A page containing a
form must invocate its corresponding page that contains the application; those pages
which receive the requests, must import applications from a dircctory of applications.
Such applications can be written in several kinds of code such as scripts, Java scripts,
applets and WAML applications. The arrows linking sections refer to navigability,
e.g. the section that points another can access the visible pages in that section.

In WSML, a web site is specificd with an element called website, the root clement
(see the following XML document). The root element is divided in section clements,
which have a unique name and might specify several web pages. The pages of a web
site are represented as webpage clements, which require the definition of the following
altributes: name referring to the name of the web page, and private referring that this
page is only available for logged users. There are two clements used for controlling
the navigation: navList which define a set of links to external or internal pages, and
navControl which is used to link the internal sections into the site. Finally, a web page
might contain many diflerent elements like text paragraphs, imported files and photos,
forms, web applications, and links to other pages, among others. These elements arc
considered in WSML and further details can be found in the appendixes A and B.
Finally, consider the following XML document as a representation of figure 1.

An Approach for Facilitating Development of Web-based Information Systems 295

<webgite name«*SEPE">
<gection name=‘*‘ROOT’'>

<navControl section="ROOT"/>

<navControl section="Tools"/>

<navControl gection-"Users*/»

<webpage name=*index® title="Principal page.®">
<text>Welcome to the SEPE Web aite...</text>

</webpages>

<webpage name="aboutUs" title=’’'More about us.’’»

<text>We are an institute ...</text>
</webpages
<gection/>

<gection namee’’Tools’'’'>
<navControl section="ROOT"/>
<navControl sections"Tools*/>
<webpage name=*"PEC’'* privates"yes®>
<text>The PEC is a national program for...</text>
<applmport namee‘‘’PecApp’’ type='‘JavaScript’‘/>
</webpage>
<webpage name="PRONAP® private«"yes®>
<applmport names’‘PronapApp‘'’ types='‘Applet‘’/>
<text>PRONAP (Programa Escuelas de Calidad)c</text>
</webpages
<webpage name="Media® private«"yes">
<text>This is the multimedia handler tool for.

<applmport name=‘‘MediaApp’’ type=‘‘Applet’'/»
</webpages
<section/>

..</texts>

<section name=‘'’'Users’’'>
<navControl section="ROOT"/>
<navControl sections"Tools"/»
<webpage name="startUserSession">
<text style="bold">
To start a user session £ill the form and click "Send".
</text>
<form action="idUser.php">
<input types"text® name="username” label="User name:"/>
<input type="password* names«"password® label«"Password:"/>
<submit label="Send®*/>
</form>
<text>Have a nice dayl</text>
</webpage>
<webpage name«®changePassword®>
<text>
In this section you can change your password.
</text>
<text style="bold">Please fill the form below.</text>
<form action="chPass.php">
<input type="name®" name="name® label="Your user name:"/>
<input type="password" name="pass" label="Your password:"/»
<input type="password®" name="newpass®
label="Write a new password:"/>»
<submit labels="submit®/>
</form>

296 Angel Israel Ortiz-Cornejo, et al.

</webpage>
<webpage name="idUser” visible="no®>
<applmport names="identifyUserApp” type=‘‘'WAML’’ />

</webpage>
<webpage name=®"chPass” visible="no">
<capplmport name="changePassApp” type=‘'WAML'‘ />

</webpage>
<section/>
</webgite>

3.2 Web Application Markup Language (WADML)

WAML (Web Application Mark-up Language) is a markup language that specifies
applications used for rapid protolyping web pages. Such applications are embedded
into WSML through the element app/mport. A WAML file defines web applications
that can be translated to completely functional applications implemented in different
kinds of code; for instance, JSP, PHP, or ASP. The current stalus of WAML considers
three applications: database querics, database reports, and user sessions; and might be
extended by frequently used applications. The following fragment of XML document
is an example of an application to change password. This application receives the
values “name”, “pass” and “newpass” as variables; sent from the element app/mport

“changePassApp” (look at the previous XML document).

<application type-"php" name="changePassApp”>
<sqlDo dbname="SEPE" usr="general® pass="general”>

<cquery>»
update into users set password-$newpass

where name=$name and passwords$pass

</query>
<Onsuccess>
<msg>The password was changed |</msg>

</onsuccess>

<ONerror>»
<msg>The account doesn’t exists or password is wrong.</msg>

</onerrors>
</8qlDo>
</application>

4 The Code Generator

The code generation algorithm, called WAC (Wcb Application Coder), reccives
WSML documents and produces HTML web pages in a structure of dircctorics, estab-
lished by the web site design. This algorithm performs three main steps: the first step
translates WSML elements for cach web page defined in the site into HTML elements.
For translating elements a set of code templates are used, which take the values of
attributes and clements in order to generate fully functional HTML code. The second
step consists in applying style to each web page; in other words, the instructions con-
tained in cach web page are graphically organized following the style sheet used.

An Approach for Facilitating Development of Web-based Information Systems 297

Finally, in the third step the gencrated web pages are stored into a set of directorics
according the web site design.

Following the WAC algorithm (sec figure 4.2), two inputs are necded: 1) the
WSML document (well-formed and valid) and 2) the style sheet to apply. First, the
root clement of the WSML document is taken, as well as its attribute name. Then, a
directory with that value is created. if a webpage element is found, then it is translated
into HTML code using the code templates stored in the templates directory. 1f an
applmport clement is found, a file with the web application is loaded from the scripts
repository in order 1o add it to the gencrated web page. Then, the style sheet is loaded
and uscd to apply the desired visual style to the pages of the web site.

. A i

Ltw L e g ftrecEn e e ey

i OQJ 0 J D L™ € et Aiwt DAL it st JE&M] Q.ﬁ’o !;.
A iiem D B vsas et L, vedew. ltesew . . .

1 Ve o e g - --‘-1‘?..
B :
i

= las serteod Yot ¢om chamgy o’ pasreard
P sor B thr Boumy bnilorw

WNrer o ore pasevrrd !

———

lmmmm-wlf_—
]|

:'—1—{ Yowmwspmnad |
Dxincienl romn,
Alwst e

=
~A o

‘fe-e lems
ermemmened

Fig. 4.1. Web page awtomatically generated from the clement startUserSession.

The style sheet basically parses the elements contained in each page and generates
HTML code. Finally, cach page in the site is stored into its corresponding directory
inside of the root dircctory; where each directory corresponds to a section in the site.
Figure 4.1 shows the web page automatically gencrated using the following algorithm.

algorithm WAC(WSML document, String siyle)
input: a WSML document and an existing style sheet.
output: a sct of web pages in HTML code and possibly embedding other kinds of code.

roat <- root clement of the document

sitename <- value of the atinbute nume in the root element
create a directory called swwename

switch to the recently created directory

for cach section clement in roar do
sechionNume <- value of the attribute nume in the current element

arcate a directory with the name specified by sectronNume

set the recently created directory as the current directory
for each nuvlast ot navControl element in ot do

creatcNavList(curtent navlist of nav(onirvl clement)

end

for cach webpuye clement in rwt do
createPage(current webpuge clement)

end

298 Angel Israel Ortiz-Cornejo, el al.

end
function createPage(WSML wehpage)
nante <- value of the attnbute nume of the webpuye clement
exiemion <-the stnng “himl”
for each element \n webpage do
transform Element(clement)
end
for each applmport element in wehpage de
impmAppllwlon(upplm;mﬂ)
end
load the snylevheef from the templates repository specified by the syle attribule
copy the instructions of the wehpage clement in the siylehicet
pue <= the document obtained from the previous stcp
save the cantent of puge. in the current directory, with its name and exiension

end

function createNavLisi(WSML navl:lement)
elemAume <- the namne of the clement nuvllement
it clemNume « ‘navList” then
transfornElement(navElement)

clse
nen €S <- value of the attnbute secrion of navklement

papedrray <-all the visible web pages defined in the section nar(’y
for cach foundpuge in pagesArruy do
Jplink <- create arelative link to foundpage
linksArruy <- append fplink
end
replace the nartlement with the clements in linksArray
end
end

function transformElement(WSML element)
find a code lemplate for element in the teinplates repository
if found then
apply the code template to element
else
keep element unmodificd

end

end

function importApplication(WSML miruction)
imAppType <- value of the atiribute 1ype of the inviruction clement
mAppNume <= value of the atinbute nume of the ustruction clement
if imApplype = “Script” then
open the file called imAppNume from scripts reposilory
replace mviruction with the content of the opened file
extension <- the scripts language 1ype of the imported application
end
il imAppType = “WAML" then
rumu-:!e <- |hg root element of the file called imAppNume
In scripts repository
generateScnptsCode(wamlFile)
r:plzcc the wnstruction element with the code obtained in the previous step
en
il imAppType = “Applet” then
replace instruction with an Applet invocation of the application called
imAppName contained in the scripts reposilory
end
end

function generateScriptsCode(WAML wamlapp)

An Approach for Facilitating Development of Web-based Information Systems 299

applwnuaje <- value of the atribute fype of the wamlupp clement
select just the code templates for the language applanguaye in the scripts repository
for cach applnviruciion element in wumlupp do
find a code lemplate for upplnviruction in the seripts repository
if found then
apply the code template to transform this clement
else print an emror message
end
end
end
end
Fig. 4.2. The codc generation algorithm WAC (Web Application Coder).

5 Case Study: A System for Evaluating Basic Education

Our approach has been tested with a web-based information system for evaluating
basic education. In this system we implement two evaluation models: PEC and
PRONAP (7, 8]. These modcls arc part of the national reform of education in order to
improve issues that currently limit the performance in basic education. This system
includes threc subsystems: optical reading, multimedia, and evaluation. The optical
reading sub-system facilitates the data-entry from surveys applied to students, lectur-
crs, and family parents; this is accomplished using the software Remark Ollice OMR
and a scanner with an automatic document feeder. The multimedia sub-system facili-
tates the transcription of data collected from two devices: audio-recorder and video-
recorder. The evaluation sub-systcm facilitate the analysis, generation, and manage-
ment of structured and unstructured information of the evaluation models PEC and
PRONAP; we usc ontologics for the qualitative evaluation and causal relations for the
quantitative evaluation. The three subsystems must provide or retrieve contents from
an integrated web-site. Thus, using our approach, such subsystems must specify their
applications/content using the markup languages WSML and WAML, these sub-
systems do not have to worry about visual presentation; besides, they might save pro-
gramming cffort through using WSML and automatically generate code, or they might
embed applications/scripts through the use.of WAML. Our preliminary investigations
suggest the following advantages: consistent visual view, less time and effort spent in
programming, less costs in the devclopment face, and less expertise required for de-
signing web sites. We implemented this system using XSLT, JDOM, and Java [9].

6 Conclusions and Future Work

In this paper we have presented an approach for facilitating development of web-
based information systems through markup languages and automatic code generation.
For such purpose, we described a tool called WISBuilder based on the MVC pattern
design in an attempt to automate the development of two components: view and con-
troller. The view is a reusable XSL file that can be implemented in any development
environment, with such file we apply a consistent view for the entire web site. The
controller is specified through the use of two markup languages, and is intended to use

300 Angel Israel Ortiz-Cornejo, et al.

a GUI environment for casy and fast development. Through the separation of these
two components (view and controller), a web-based infom'.lution system can be devel-
oped in parallel in order to save time and separate tcchm.cz.ﬂ. expertise, The markup
languages WSML and WAML were very useful for specifying web conlc-nls. Such
intermediate languages ofler several advantages, for instance, web contents in a more
declarative language. several kinds of code can be gencrated, and .dynamlc contents
for adaptive navigation. The WAC algorithm was uscful for automating the process of
generating fully functional HTML code given the markup languagqs and codc tem-
plates. Therefore, our approach facilitates the development of the view through reus-
ability and consistent application of style sheets, and the controller lhr-ou_gh autom:.llic
code generation. In this regard, WISBuilder can be very uscful for building web sites
in new domains with a significant reduction in programming cflort. The goals of
WISBuilder are twofold: 1) to serve as a testbed for performing rescarch in the area of
web-based information systems, and 2) to save time and effort spent in the web devel-
opment process so that more services might be automated in the world.

As an immediate work we plan to create a Graphical User Interfuce (GUI) tool for
designing web sites based on the murkup languages WSML and WAML, in such a
way that WISBuilder might become into a CASE tool for sofiware engincers. Also, we
plan to perform more experiments in other domains. After such work, our approach
could be extended into a more robust framework in order to include: adaptive naviga-
tion [10], validation of data-cntry, and automatic testing of thc gencrated web sites.
Finally, we plan to offer WISBuilder frecly available for educational and rescarch
purposes under request.

Acknowledgements

We would like to thank CONACYT and the government of Tlaxcala for the financial
suppont of this rescarch, FOMIX project TLAX-2003-C02-12485. Also, we would
like to thank the colluboration of the Direction of Rescarch and Evaluation of Educa-
tion of the Mexican Ministry of Education - Tlaxcala State,

References

1. Cen, S., Fratemali, P., Bongio, A.: Web Madelling Language (WebML): a Modclling Lan-
guage for Designing Web sites. WWW Canference, 2000.

2. Brambilla M., 8. Cen, S. Comai, P. Fratemali: Model-driven development of Web Services
and hypertext applications. 2003.

3. Turau, V.: A Framework for Automatic Generation of Web-based Data Entry Applications
Based on XML. In Proceedings of Symposium on Applicd Computing (SAC 2002), Madrid,
Spain, March 2002.

4. Guillen M., Del Rosario M., Sosa V., and Hemandez H.: GARP: A tool for Creating Dy-
namic Web Reports Using XS and XML Technologies, In Procecedings of ENC, Tlaxcala,
México, September 08 - 12, 2003, 54 - 9.

5. Suzuma, T, Nukada, H., Saito, M., Matsuoka, S., Tanaka, Y., Sckiguchi, S: The Ninf Portal.
An automatic Generation Tool for Grid Pontals. Scatle, Washington, USA. November 2002.

An Approach for Facilitating Development of Web-based Information Sysiems 301

6. Cuayshuitl H., Rodriguez M., and Montiel J.. VoiceBuilder: A Framework for Automatic
Speech Application Development, México, April 2004.

7. PEC: Programa Escuclas de Calidad, hup://mww.escuelasdecalidad.net

8. PRONAP: Programa Nacional para la Actualizacién Permanente, htip://pronap.ilcc.cdu.mx

9. Armstrong, E., Ball, J., BodofT, S.. Bode D., Fisher, M., Fordin, S., Green, D., Haase, K.,
Jendrock, E: The Java Web Services Tutorial. http://java.sun.com/webservices, Feb 2003.

10. Po-Hao Chang. Wooyoung Kim, and Gul Agha: An adaptive Programming Framework for
Web Applications. 2003. The IEEE/IPS) Symposium on Applications and the Intemet
(SAINT04). Tokyo, Japan January 26 - 30, 2004.

302 Angel Israel Onti=-Cornejo, et al.

Appendix A: DTD of the WSML Markup Language

<?xm]l versione®l.,0® encoding="iso0-8859-1"7>

€]~ CECEEEEEEEFEEeNARSPSSTTERAT eSS ERERAREERAREnS

<l-- BElements for specifying contents of & web site

(! -- S ASSrSrESTNEESES SN RPN SsEEaE RS NEESEEEERRSERER

< !ELEMENT
<|ATTLIST
<!ELEMENT
<!ATTLIST
<! ELEMENT

o>
==
-->
webgite
website
section
section
webpage

(section+) >

name CDATA #REQUIRED>
(webpage+) >

name NMTOKEN "ROOT">»
{{navControl | navList)r,

(text | form |

| appIrmport | attachXml | publish)*)>

<!ATTLIST

>

< | ELEMENT
<|ATTLIST
.p.,

<! ELEMENT
<!ATTLIST
< |ELEMENT
<IATTLIST
< ELEMENT
< |ATTLIST
<!ELEMENT
<|ATTLIST
< | ELEMENT
<!ATTLIST

>

<! ELEMENT
<l ATTLIST
< !ELEMENT
<IATTLIST
<!ELEMENT
<!ATTLIST
< |ELEMENT
<!ATTLIST

>
< |ELEMENT
<!IATTLIST

webpage
name NMTOKEN "index"®
section NMTOKEN "ROOT"
title CDATA ®REQUIRED
private (yes | no) "no"
visible (yes | no) "yes*

text (BPCDATA | link)e>
text style (title | p | heading | bold | italics

link EMPTY>

link label CDATA SREQUIRED to CDATA #REQUIRED>
naviist (link)e>

navList title CDATA WREQUIRED id ID #REQUIRED>
navControl EMPTY>

navControl section NMTOKEN SREQUIRED>

form {(input)+, submit, rescet?)»

form action NMTOXKEN #REQUIRED>

input EMPTY>

input

link | {nclude

| big | small)

type (button | checkbox | file | image | hidden | password |
radio | text) WREQUIRED

name NMTOKEN ®REQUIRED
label CDATA **

maxlength NMTOKEN *20°"

submit EMPTY>

submit label CDATA "submit®>
regset EMPTY>

reset label CDATA "reset®>
attachXml EMPTY>»

attachXml path CDATA #REQUIRED stylesheet CDATA SREQUIRED>

include EMPTY>
include

path CDATA RREQUIRED
type (text | image | file | xml) WREQUIRED

publish EMPTY>

publish
P1leTypes NMTOKENS #REQUIRED
dir CDATA WREQUIRED

orderby (name | ext | size) *name®
style (table | list) *lige*

An Approach for Facilitating Development of Web-based Information Systems 303

>
<1 ELEMENT applmport EMPTY>
<!ATTLIST applmpore
name CDATA SREQUIRED
type (Script | JS | Applet | WAML) WREQUIRED

304 Angel Israel Ortiz=-Cornejo, et al.

Appendix B: DTD of the WAML Markup Language

<?xm] version="1.0" enceding="isc-99859-1"2>

€ - P sepnpegepnpepepepeer R P P BT L L L L L s
<t=-- Elements for spucifying applications embedded into WSEML -=>
(!-- .‘n\-n---------.------.--—ﬂﬂn---b-----..--ﬁ.-----ﬂ------- -—

<'ELEMENT ofpplication (param*, (msg | sqlDo | sqlReport | startSession))>

<!ATTLIST appiication
type (jzp | php) #REQUIRED
name NMTOKEN PRECUIRED
>
<'ELEMENT sqlDo ((query, (onerror? | onsuccess?)*)+)>
<'ATTLIST sqlDo
dbname NMTCKEN ORECUIRED
server NMTCKEN "127.C.0.1"
usr NMTOKEN SRECUIRED
pass KNMTCKEN PRECUIRED
driver (cdbc | rmysql | oracle) "odbc®™
>
<'ELEMENT sqlReport ((query, (onerror? | onsuccess?)®)¢)>
<'ATTLIST sqlRepart
dbnare NMTOKEN PREQUIRED
server NMTCKEN "127.0.0.1"
usr NMTOREN MREGUIRED
pass NMTCKEN SREQUIRED
driver (oadbc | mysql | oracle) "odbc"
>
<'ELEMFNT startSession (lrequiredField)+,errorMsg)>
<'ATTLIST startSession
dbnore KMTCKEN SREQUIRED
tablenaxme NMTCKEN #REQUIRED
>
<'FLEMENT requircdField EMPTY>
<'ATTLIST requiredField name NMTOKEN $REQUIRED variable CDATA #REQUIRED>
<!ELEMENT query (DPCDATA) >
<!'ELEMENT oncrror (msg | sqlDo | sqlReport | (query, (onerror? | onsuc-
Ceas?]) >
<rEL?H£HT onsuccess (msg | sqlDo | sqlReport | (query, (onerror? | onsuc-
CeLntl®)}®>
<!'ELEMENT msq {(IPCDATA) >
CHELEMENT errorMsg (WFCDATA) >
< ELEMENT param EMPTY>
<!ATTLIST param names NMTOKENS JREQUIRED>

